近日,DeepSeek公司顛覆了人工智能領(lǐng)域的傳統(tǒng)認知。長久以來,業(yè)界普遍認為訓(xùn)練尖端模型需要超過10億美元資金投入和數(shù)千顆最先進的芯片,認定AI必須閉源開發(fā),并相信只有少數(shù)公司擁有構(gòu)建AI模型的能力——因此嚴守技術(shù)機密至關(guān)重要。
但這家中國公司給出了不同答案。媒體報道顯示,他們僅用2,000顆英偉達(Nvidia)芯片,以約600萬美元的超預(yù)期成本就完成了最新模型的訓(xùn)練。這印證了我們始終堅持的觀點:更精簡高效的模型無需龐大封閉系統(tǒng)也能取得實質(zhì)突破。
然而中國團隊的創(chuàng)新引出了一個更深刻的命題:誰將主導(dǎo)人工智能的未來?AI技術(shù)的發(fā)展絕對不能被少數(shù)人壟斷,特別是那些并不認同企業(yè)數(shù)據(jù)保護、隱私權(quán)和透明度等基本價值觀的企業(yè)。真正的解決之道不在于限制進步,而在于構(gòu)建由高校、企業(yè)、科研機構(gòu)和公民社會組織共同參與的開發(fā)生態(tài)。
另外一種情況是什么?讓那些價值觀和優(yōu)先事項不同的人掌握人工智能的領(lǐng)導(dǎo)權(quán)。這意味著我們要主動放棄對這項重塑各行各業(yè)、影響社會方方面面的關(guān)鍵技術(shù)的掌控。唯有實現(xiàn)AI民主化,才能催生真正的創(chuàng)新與進步。
如今,炒作的時代已經(jīng)結(jié)束。我堅信2025年必須成為打破AI技術(shù)壟斷的破局之年。到2026年,社會各界不應(yīng)止步于應(yīng)用AI,更要成為AI的共建者。
DeepSeek對AI領(lǐng)域的啟示
構(gòu)建這樣一個未來的關(guān)鍵在于小型開源模型。DeepSeek給我們帶來的啟示是,最佳的工程設(shè)計應(yīng)該從性能和成本兩個方面進行優(yōu)化。一直以來,AI被視為規(guī)模化的游戲——模型規(guī)模越大,效果越好。但DeepSeek真正的突破除了規(guī)模,還關(guān)乎效率方面。在IBM的研究中,我們發(fā)現(xiàn)針對特定用途優(yōu)化的模型已經(jīng)將AI推理成本降低了30倍,極大提高了AI模型訓(xùn)練的效率和可及性。
我不認為通用人工智能(AGI)即將到來,或者AI的未來取決于建造規(guī)模如曼哈頓般龐大、依靠核能供電的數(shù)據(jù)中心。這些觀點制造了虛假的二元對立。沒有任何物理法則規(guī)定AI必須是昂貴的。訓(xùn)練和推理成本并不是固定的——這是一個亟待解決的工程挑戰(zhàn)。無論老牌企業(yè)還是初創(chuàng)公司都有能力降低這些成本,使AI變得更實用和更加普及。
這種情況早有先例。在計算機發(fā)展初期,存儲和處理能力成本高昂,令人望而卻步。然而,通過技術(shù)進步和規(guī)模經(jīng)濟效應(yīng),這些成本大幅下降,由此開啟了一波又一波的創(chuàng)新和應(yīng)用浪潮。
AI也將遵循同樣的軌跡。這對于世界各地的企業(yè)而言是好消息。一項技術(shù)只有變得經(jīng)濟可行且容易獲取時,才能真正發(fā)揮變革性的作用。通過采用開放、高效的AI模型,企業(yè)可以獲得契合自身需求的高性價比解決方案,使AI在各行各業(yè)釋放出最大潛力。(財富中文網(wǎng))
阿溫德·克里希納現(xiàn)任IBM的董事長兼首席執(zhí)行官。
Fortune.com上發(fā)表的評論文章中表達的觀點,僅代表作者本人的觀點,不代表《財富》雜志的觀點和立場。
翻譯:劉進龍
審校:汪皓
近日,DeepSeek公司顛覆了人工智能領(lǐng)域的傳統(tǒng)認知。長久以來,業(yè)界普遍認為訓(xùn)練尖端模型需要超過10億美元資金投入和數(shù)千顆最先進的芯片,認定AI必須閉源開發(fā),并相信只有少數(shù)公司擁有構(gòu)建AI模型的能力——因此嚴守技術(shù)機密至關(guān)重要。
但這家中國公司給出了不同答案。媒體報道顯示,他們僅用2,000顆英偉達(Nvidia)芯片,以約600萬美元的超預(yù)期成本就完成了最新模型的訓(xùn)練。這印證了我們始終堅持的觀點:更精簡高效的模型無需龐大封閉系統(tǒng)也能取得實質(zhì)突破。
然而中國團隊的創(chuàng)新引出了一個更深刻的命題:誰將主導(dǎo)人工智能的未來?AI技術(shù)的發(fā)展絕對不能被少數(shù)人壟斷,特別是那些并不認同企業(yè)數(shù)據(jù)保護、隱私權(quán)和透明度等基本價值觀的企業(yè)。真正的解決之道不在于限制進步,而在于構(gòu)建由高校、企業(yè)、科研機構(gòu)和公民社會組織共同參與的開發(fā)生態(tài)。
另外一種情況是什么?讓那些價值觀和優(yōu)先事項不同的人掌握人工智能的領(lǐng)導(dǎo)權(quán)。這意味著我們要主動放棄對這項重塑各行各業(yè)、影響社會方方面面的關(guān)鍵技術(shù)的掌控。唯有實現(xiàn)AI民主化,才能催生真正的創(chuàng)新與進步。
如今,炒作的時代已經(jīng)結(jié)束。我堅信2025年必須成為打破AI技術(shù)壟斷的破局之年。到2026年,社會各界不應(yīng)止步于應(yīng)用AI,更要成為AI的共建者。
DeepSeek對AI領(lǐng)域的啟示
構(gòu)建這樣一個未來的關(guān)鍵在于小型開源模型。DeepSeek給我們帶來的啟示是,最佳的工程設(shè)計應(yīng)該從性能和成本兩個方面進行優(yōu)化。一直以來,AI被視為規(guī)?;挠螒颉P鸵?guī)模越大,效果越好。但DeepSeek真正的突破除了規(guī)模,還關(guān)乎效率方面。在IBM的研究中,我們發(fā)現(xiàn)針對特定用途優(yōu)化的模型已經(jīng)將AI推理成本降低了30倍,極大提高了AI模型訓(xùn)練的效率和可及性。
我不認為通用人工智能(AGI)即將到來,或者AI的未來取決于建造規(guī)模如曼哈頓般龐大、依靠核能供電的數(shù)據(jù)中心。這些觀點制造了虛假的二元對立。沒有任何物理法則規(guī)定AI必須是昂貴的。訓(xùn)練和推理成本并不是固定的——這是一個亟待解決的工程挑戰(zhàn)。無論老牌企業(yè)還是初創(chuàng)公司都有能力降低這些成本,使AI變得更實用和更加普及。
這種情況早有先例。在計算機發(fā)展初期,存儲和處理能力成本高昂,令人望而卻步。然而,通過技術(shù)進步和規(guī)模經(jīng)濟效應(yīng),這些成本大幅下降,由此開啟了一波又一波的創(chuàng)新和應(yīng)用浪潮。
AI也將遵循同樣的軌跡。這對于世界各地的企業(yè)而言是好消息。一項技術(shù)只有變得經(jīng)濟可行且容易獲取時,才能真正發(fā)揮變革性的作用。通過采用開放、高效的AI模型,企業(yè)可以獲得契合自身需求的高性價比解決方案,使AI在各行各業(yè)釋放出最大潛力。(財富中文網(wǎng))
阿溫德·克里希納現(xiàn)任IBM的董事長兼首席執(zhí)行官。
Fortune.com上發(fā)表的評論文章中表達的觀點,僅代表作者本人的觀點,不代表《財富》雜志的觀點和立場。
翻譯:劉進龍
審校:汪皓
Last week, DeepSeek challenged conventional wisdom in AI. Until now, many assumed that training cutting-edge models required over $1 billion and thousands of the latest chips. That AI had to be proprietary. That only a handful of companies had the talent to build it—so secrecy was essential.
DeepSeek proved otherwise. News reports suggest they trained their latest model with just 2,000 Nvidia chips at a fraction of the expected cost—around $6 million. This reinforces what we’ve said all along: Smaller, efficient models can deliver real results without massive, proprietary systems.
But China’s breakthrough raises a bigger question: Who will shape the future of artificial intelligence? AI development cannot be controlled by a handful of players—especially when some may not share fundamental values like protection of enterprise data, privacy, and transparency. The answer isn’t restricting progress—it’s ensuring AI is built by a broad coalition of universities, companies, research labs, and civil society organizations.
What’s the alternative? Letting AI leadership slip to those with different values and priorities. That would mean ceding control of a technology that will reshape every industry and every part of society. Innovation and true progress can only come by democratizing AI.
The time for hype is over. I believe that 2025 must be the year when we unlock AI from its confines within a few players. By 2026, a broad swath of society shouldn’t just be using AI—they should be building it.
DeepSeek AI lesson
Smaller, open-source models are how that future will be built. DeepSeek’s lesson is that the best engineering optimizes for two things: performance and cost. For too long, AI has been seen as a game of scale—where bigger models meant better outcomes. But the real breakthrough is as much about size as it is about efficiency. In our work at IBM, we’ve seen that fit-for-purpose models have already led to up to 30-fold reductions in AI inference costs, making training more efficient and accessible.
I do not agree that artificial general intelligence (AGI) is around the corner or that the future of AI depends on building Manhattan-sized, nuclear-powered data centers. These narratives create false choices. There is no law of physics that dictates AI must remain expensive. The cost of training and inference isn’t fixed—it is an engineering challenge to be solved. Businesses, both incumbents and upstarts, have the ingenuity to push these costs down and make AI more practical and widespread.
We’ve seen this play out before. In the early days of computing, storage and processing power were prohibitively expensive. Yet, through technological advancements and economies of scale, these costs plummeted—unlocking new waves of innovation and adoption.
The same will be true for AI. This is promising for businesses everywhere. Technology only becomes transformative when it becomes affordable and accessible. By embracing open and efficient AI models, businesses can tap into cost-effective solutions tailored to their needs, unlocking AI’s full potential across industries.
Arvind Krishna is the chairman and CEO of IBM.
The opinions expressed in Fortune.com commentary pieces are solely the views of their authors and do not necessarily reflect the opinions and beliefs of Fortune.